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ON THE THERMAL INSTABILITY OF A ROTATING-FLUID
SPHERE CONTAINING HEAT SOURCES

By P. H. ROBERTS
School of Mathematics, University of Newcastle upon Tyne, England

(Communicated by S. Chandrasekhar, F.R.S.—Received 26 September 1967)
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The theory of marginal convection in a uniformly rotating, self-gravitating, fluid sphere, of uniform
density and containing a uniform distribution of heat sources, is developed to embrace modes of con-
vection which are asymmetric with respect to the axis of rotation. It is shown that these modes are the
most unstable, except for the smallest Taylor numbers, T (a measure of the rotation rate); i.e. for
any T and o (Prandtl number), the lowest Rayleigh number (a measure of the temperature
gradients in the sphere) is associated with an asymmetric motion. This is demonstrated both by an
expansion method suitable for small T, and by asymptotic theory for T — co. For large T, the
eigenmode most easily excited is small in amplitude everywhere except near a cylindrical surface,
of radius about half that of the sphere, and coaxial with the diameter parallel to the angular velocity
vector,
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1. INTRODUCTION

The dynamo hypothesis provides one of the most attractive explanations of the magnetic
field of cosmic bodies, such as the Earth. It is known theoretically that such homogeneous
dynamos cannot maintain axially symmetric fields, and it is perhaps significant that one of
the best studied cosmic fields, that of the Earth, while showing a high degree of symmetry

Y B \

:é about its polar axis, exhibits significant asymmetries. The dynamo theory is, therefore,
= z probablyt untenable unless we can find a plausible reason for asymmetric fluid motions
8 = within the body. Now one of the most obvious forces driving the fluid is the buoyancy
O created by internal heating; in the case of the Earth, for example, by dissolved radioactivity
E 8 in the core. There seems, however, no reason to suppose that these sources are distributed

in any but a spherically symmetric fashion, giving a buoyancy force which is radial and
spherically symmetric everywhere. At first sight, it seems most unlikely that a radial
buoyancy force, together with the axially symmetric effects of rotation, could together
result in asymmetric motions. On reflection, however, we may recall a celebrated case in
which rotation induces asymmetry, namely the formation of the Jacobi ellipsoid from the
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T I say ‘probably’ since it has not been proved that asymmetric fields could not be maintained by
axisymmetric motions.
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94 P. H. ROBERTS

Maclaurin spheroid beyond the point of bifurcation of the sequence of rapidly rotating,
self-gravitating, uniform fluid bodies. Also we may recall the observational fact that, under
certain circumstances, asymmetric motions are observed in annulus experiments (in which
free convection between two coaxial, differentially heated, cylinders rotating together is
studied).

One can give general reasons why asymmetric motions may be expected in a rotating
fluid sphere containing heat sources. To simplify the discussion, we henceforward ignore
magnetic effects on the motion, and consider the marginally stable state only, i.e. seek, for
given Taylor number (T) and Prandtl number (), the smallest Rayleigh number (R) at
which persistent motions of infinitesimal amplitude are possible. Here

2\ 2
T = (2Q70) ) w:%, R:(%é'fg, (11)

v VK

where 7, 1s the radius of the sphere,  is its angular velocity, v is the kinematic viscosity, « is the
thermal diffusivity, « is the coefficient of volume expansion, — gr/r, is the acceleration due
to gravity at a point distant r from its centre, and — fr/r, is the temperature gradient at that
point. To gain qualitative insight into convection in the rotating case, it seems profitable to
draw analogies with the (better-studied) case of Bénard convection in a rotating fluid layer
heated from below and cooled from above (cf. Chandrasekhar 1961, chap. ). The argument
is most clear-cut if we suppose that v is fixed, T is large, and R is increased slowly and
systematically from zero.

We consider first the possibility that the heat from the interior of the sphere escapes to the
surface by motions which convect it parallel to the axis of rotation towards the poles. The
effective driving force of such motions is the component of buoyancy parallel to the axis,
and the situation becomes akin to a Bénard layer in which  is perpendicular to the layer.
It has been shown by Chandrasekhar (1961) that convection, when it first occurs in such a
layer, will be in the form of an array of cells, each of thickness T-#, and that the Rayleigh
number will then be O(T#). In taking this fact over to the spherical case, one has to make
allowances for curvature effects. A simple argument (cf. Roberts 19654, p. 245; this paper
is henceforward called ‘paper I°) shows that convection of this type, when it first occurs in
the sphere, will be confined to a single axial cell, of thickness T%, and that the Rayleigh
number will also be O(T%).

On the other hand, we might consider the possibility that the heat from the interior of the
sphere escapes to the surface by motions which convect it perpendicular to the axis of
rotation towards the equator. The effective driving force of such motions is the component
of buoyancy perpendicular to the axis, and the situation becomes akin to a Bénard layer in
which  is parallel to the layer. It is easily shown that convection, when it first occurs in
such a layer, takes the form of infinitely long rolls with axes parallel to &, and that the
Rayleigh number at which this occurs is exactly the same as for the non-rotating layer.
Taking this fact over to the spherical cases, we might surmise that modes of convection
proportional to cosmg and sinmg, where ¢ is the aximuthal angle, may exist in which m is
large, in which the variations in z are comparatively slow or absent, and for which R is
virtually unaltered from its value, at the same m, in the non-rotating case. It is true that,
in the non-rotating situation, R ~ m* for large m, so that the motions will certainly have a
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE 95

higher critical Rayleigh number than the axial cell if m > O(T?), but one might feel that,
provided this inequality is violated, these motions will provide the smallest Rayleigh
number in the rotating system. Again, however, one must make allowances for curvature
effects in the spherical case. These prevent the formation of the infinitely long rolls crucial to
the result for the plane layer, and once they are ‘cut off” to ‘fit into’ the sphere, the critical
value of R is increased drastically, particularly for small m.

It will be shown in this paper that the most unstable modes in a sphere are intermediate
to the two extreme cases considered above, and that the motions are a compromise between
the axial cell appropriate for small m, and the equatorial cell appropriate for larger m. For
large T, the critical value of m is O (T%) ; the critical Ris O(T#), but is smaller than that of the
axial cell of paper I. These findings are corroborated by a study of the case of small T, from
which it is shown that the value of m, for which R is least, is zero only if T is small. As T
increases, the critical m also increases systematically. One point must, however, be made
clear: these facts are demonstrated in particular cases of » only, and it is not inconceivable
that they become invalid in the w — 0 or @ = 00 extremes. Also, of course, non-linear effects
which might conceivably give rise to subcritical finite-amplitude motions (Veronis 1966)
are ignored.

Before leaving this qualitative discussion I return briefly to the dynamo problem. In his
study of nearly symmetric dynamos at large magnetic Reynolds numbers, Braginskii (1964)
has shown that, not only must the velocity fields, u, be asymmetric, they must be so asym-
metric that the average over ¢ of uXdu/d$ is non-zero. (For more precise details, see
Braginskii’s paper.) The motions studied in this paper satisfy this demand.

The convection problem discussed in this paper has also been considered by Chandra-
sekhar (1957, 1961), Bisshopp (1958), Roberts (paper I) and Bisshopp & Niiler (1965).
Related work has been reported by Chamalaun & Roberts (1962) and Roberts (19655).

2. DERIVATION OF SCALAR EQUATIONS
The vector form of the perturbation equations governing marginal convection may be
obtained by reference to chapter 9 of Chandrasekhar’s treatise (1961). In non-dimensional
form, the radius of the sphere providing the unit of length, they are

%‘l; +A1,xu = —grad w+ ROx + V?u, (2:1)
W %? = u.x+ V2®s (2.2)
divu = 0. (2-3)

Here R is the Rayleigh number, T = A%is the Taylor number, and o is the Prandtl number.
The variables u, ®, and @ denote, respectively, the fluid velocity, the temperature perturba-
tion, and the pressure perturbation, all measured in suitably scaled units. The unit vector,
1, is parallel to the axis of rotation, Oz; X is the position vector drawn from the centre, O,
of the sphere as origin. For a fluid contained by a rigid shell, the boundary conditions which
solutions to (2-1) to (2-3) must obey are

®=0, u=0, on r=1, (2-47)

and similar conditions must be applied if the surface of the fluid is free (see (2:13f) below).

12-2
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96 P. H. ROBERTS

We may derive three independent scalar equations from (2-1) by subjecting it in turn to
the operators div, X.curl and x.curl?. The first of these equations involves @, while the
others do not; i.e. it essentially determines @ when the other field quantities are known.
Since, however, we have no boundary condition to apply to @, we can, as far as solving the
stability problem is concerned, omit this equation from our discussion. We therefore pass on
to the remaining two equations: these are

d oa
, g = 1x. 22 .
X.Curl(gt V)u Ax.az, (2:5)
XV%E*Vﬂume—ﬁwﬂwJU@ (26)
RV "0z o
where L? is the operator P PI:
1r=3 [xz o -+ (x, *Bx) :‘ —x2V2, (2-7)

If we now write, as suggested by (2:3), u as the sum of its toroidal and poloidal parts,
u = curl 7x+curl®Sx, (2:8)

equations (2-5), (2+6) and (2-2) reduce to

9 P
21— __VV2Y ) V7T — 3¢ .
[L(% V) A%JF_<AQ6, (2:9)
Pﬂ@wvﬂ_%f]vw:A@TmRm® (210)
“\a ¢ >

9
@~—Vﬂ®:L%, (211)

%
where @3 is the operator Q¥ = 9.1 (I2~a~—l—»~a~ L2) (2:12)

P 7z e\" )

which commutes with V2, but not with L2 The variable ¢ is the azimuthal component of
spherical polar coordinates (r,0,¢) in which 0 = 0 is the axis of rotation. The boundary
conditions may now be written

§=2—T-0=0, on r=1, (2137)

if the bounding surface is rigid, and

7S T

Tt o

S T=0=0, on r=1, (2-13f)
if it is free (and if the time-scale of the motion is large compared with the period of surface
gravity waves, the usual case considered in convection problems). The four boundary
conditions (2-13), together with the requirement that the solution shall be bounded within
the sphere (and in particular, at r = 0), suffice to determine the characteristic values. (The
system (2-9) to (2-11) is eighth order in d/dr despite appearances: since L? involves d/df and
d/d$, but not 9/dr, Q3 is first order in d/dr, and not third order.)
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE 97

3. THE BASIS FOR THE EXPANSION OF S

We proceed as follows. We expand S in an infinite series, each term of which satisfies the
first two conditions (2-13). Then equation (2-11) is solved subject to the last of conditions
(2-13) ; likewise, equation (2-9) is solved under the third condition of (2-13). The resulting
expressions for ® and 7 are used to evaluate the right-hand side of (2-10). On multiplying
(2-10) successively by each function used in the expansion for §, and integrating over the
interior of the sphere, an infinite set of linear homogeneous equations are obtained for the
coefficients of the S-expansion. This set possesses non-trivial solutions, if, and only if, R
takes one of an infinite discrete set of characteristic values, of which we only aim to determine
the smallest. (See also Chandrasekhar & Reid 1957.)

We expand S in the form
§= 3 3 Ay By (r) Py (p) exp {i(mp+ 1)}, (3-1)
- 23 dr
where 4 = cos/, Py = (=) gm Balw) (3-2)

is (Ferrer’s) associated Legendre function, and

“/7 ( ) n+%(am)

Here J, and I, denote Bessel functions of the first kind of real and imaginary arguments, and
a,; denotes the ith smallest positive root of the equation

B,(r) = 1 ‘]n+%( i) In_(amr) ) (3-3)

Jr’z+»§(“ D) Loy (o) £

ni ni) __ __ %is 34
n-l-%(“m) 1 n+% (“m) ( )
£ { 0, if r=11is a rigid surface,

where . .
1, if r=11is a free surface.

The roots of equation (3-4), and the corresponding value of

Sy (@) | Loy ()
€p; = 2t T 2, (3-5)
Jn+%((xni) In+§~((xm‘)

have been determined for z = 1(1)20 and ¢ = 1(1)20 and for { = 0 and 1; and tables listing
these values are available on request.
It is evident, from equations (3-3) and (3-4), that

B,;(1) = B,(1) =0, for £=0, (3-67)
Bm‘(l) = B;zll(l) =0, for g: 1, (36f)

so that the boundary conditions (2-13) on § are automatically obeyed.

Associated with the function B,;, there is a related function C,; defined by

r = %4@” Ly (i) |
Cni() JT T "( ) In+%( ):l (3 7)
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98 P. H. ROBERTS
We find it convenient to introduce the following abbreviations:
Jpia(0)  Lya(,)
ﬂni: S N ’ (38)
Jn+§(“m’) In+%(“m’)
Jooa(oys)  L_i(2)
__ Yn-3\"*ni n—%\%ni .
Vni = + . (3-9)
Jorg (%) Ly (i)
Note that LritVni= 2‘*(—'2*:!:'1‘ s Pui ™ Vi = — 26,

The following properties of B,; and C,; can be established:

Bm’(l) = O’ B;zz( ) g“m, (3'10)
Ci(1) =2, Cu(l) = 2n—a, f,;= 2,7, —2(n+1), (3-11)
V2[Bm'PTT{l eim¢] m(x%l Cumelmqﬁ (‘.}.12
VZ[CmPr’tn eim¢] ham anP;tn elmqb’} )
(V4—a4) B, Ppems — (V4—ak) C,, Pyeims = 0, (3:13)
J‘ ananr dr = 13 (4_4§+§amﬂni——ganiyni)5 (314)
2 1B C .r2d 2 IB C .r2d 13 2 (£2 20‘%:'“31' by
s ni an T = Oy nj nil " A7 = &n ( aniuﬂm’ ’}/m) 071?0"2{‘ (am’ nihanj nj) (1_ ij)>
’ (3-15)
L1 () 2,33
SR Byrtdr = 2 g fHExE— Aw'fju-f:]
jo«/” ( ) am ‘x4 mﬂm+§ ]n+%<x)
aZ; 2xJ,_1(x)
= - — ani?’ni_ng_ ”—“1‘%““] 5 (3]6)
0641-—964 Jn+%(x)

1 ( (271—1) a2

n 2] n+3\"n—-2,j ni
+ :]B rridr = ol Ui Vi Brs. i1
J‘ON/T[ Oy 2J [n % n— 2] an—Z]( “3 2])[g 2 4 ﬁ<§’;]7)

f l:nlr% n2j Tl+g n2] :IB T2d7
U‘\/r &2, ] n— % n—2, ]
“m

20232*—062_'_2_.] [(2 2”§+§) nz’}/m (2+2n§—§) an~2,j n—2,j]> (318)

Jl 1 li‘]n+%(an+2,jr)+];t+2( n+2,j ]B 7’2d _ (27l+3) 0‘72u

ol 4 4
onT an+2,j(an+2.j"‘“m

) [€O£,H_2 Jj niﬂni7n+2,j]a

i3 (@nio, ;) In+5’ %nr2,5) (3-19)

1

n+§ n+2] n+§ n+2_7

f __I: n*r% n+2] ‘[n+g n+2] ]B Tsz

—_ . 4 [(2 27’[5 3£) an+2,j7n+2,j+ (2+2ng+ 35) a‘m’ ﬂnl] (320)

By (3-14) and the usual expression for the integral over du d¢ of the product of two spherical
harmonics, we see that the functions B; P¢ i@+ and B,; Py e~im#+#9) are orthogonal: the
integral over the interior of the unit sphere of their product vanishes unless ¢ =m, s =n
and j = ¢ simultaneously.
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE

Writing L2 in the form
_ [ { L
Lo ﬂ} 1—p? 3¢2]’
and recalling that P obeys the differential equation

[%{(1__,‘2)%}_1_%] Py () == n(n-+1) PE(s),

we see that, for an arbitrary function, f, of 7,

L2 f(r) Pi(p) 9] = n(n+1) [f (r) P (u) €]

Writing @® in the form

d u 02 1 d
3 — 2| (1—yu2) 2
Q= [9/&{ (1= ﬂ)@u}_{— 23¢2:|( *y ) L[(l ”W]’
and recalling that P obeys the recurrence relations
d o d m2u 7 o
l:a’p{ﬂ(l“ﬂ )a”;l}—i-:[;é P (u)

_n(n+2) (n—m+-1) (n—1) (n+1) (n+m)

dPm(u) n(n—m+1) (n+1) (nt-m) 5,
—y2 n . m

we see that

0 [;;_JH%(M) P,'{’eim¢:l _ xn(n+2) (n—m+-1) LJH%(M) P eimd

2n-+1 Jr
_x( )g:l:l;ll) (n+m) \}_J’ (xr) Pm elmqi

so that, in particular,

. — Tz (@yr) 1
3  pmeimg :n(n—l~2) (71 m+1) 1 ”+% ”+% :I m aimg
Q [anPn € ] 2n+1 "Z\/T ( ) In+% Pn-l—le
_(=1) (n41) (n4m) 1 J 3 (@, r)_l ]Pmlelmqs
2n+-1 m«/r ( ) n+-§ "

3 n+ 0‘ 7’) In+ ( ) m imi m 7l—|—1) (n+3) (n—m—{—Q)
¢ [“/r{ nf% nz) Inig(a ) }Pn+ ¢:| 2n+3
1

”j'%_; "i%,(. Fw)} - lm¢:l 7l+ 2) (n+m+ 1) {Bm} maimg
[\/7’{ n+a§ n+é (OC ) P”"‘ ) 2n+3 Cni P" o
3 06 7') In-% (anir)} m im¢] % (72—1) (n—+ 1) (n_m) {Bm} m aime
e[5! PANCH el SRCHI i 201 Gl TH¢
a;n(n—2) (n+m— 1)[ { - (@ I g (o } . :l
- P’izn_ img¢ .
2n—1 - \/7 n+% +§ (am) 2¢

99

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

—~

3-28)

(3-29)

(3-30)
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100 P. H. ROBERTS

(Note: relations (3-25) to (3:30) are valid in the case n = m provided we adopt the con-
vention that P}" = 0 for n < m.) In the following sections, the following abbreviations are

uselul s = B+ oy B (3:31)
i,(g_%ﬁ%y’) (i=), (3-32)
-
T2 aﬁ; _—_—ag]ﬁm) (i ), (3-33)
m,(x) = xjf&;), (3-34)
nt =54, (w35
o () = | 200 ) 53 (330
bl = [ 2 =) Y, (@7
¥ = —ipo, (3-38)
g = ﬂ[ﬁ“ﬁé{ﬁ‘ﬂ} (8-39)
o= [ 2 e im0 ] (340
It may be noted that ) p () 2 mnl(x) +pnzx). - 2”;'] | (sa1)
+§ — 0. (3-42)

4. EXPRESSIONS FOR ® AND T

We now solve equation (2-11) subject to the last of conditions (2-13). It may be verified,
by direct substitution, that a particular integral of equation (2-11) is

@ nzmglx/r [a?ll —X Jn + ( m') 05121i+x I ;‘< ) Pn (ﬂ> ¢ v
= § 5 1P ity ) a3, )] Paa) e, (@)
It is clear that, since o ©
OB(1) = 33 2”(”+1X) i A P () eimd o, (4-2)

this solution does not in general satisfy (2:13). We must therefore add to ®® a multiple,
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE 101
©©, of the complementary function defined by equation (2:11), i.e.

1 Sy (x1)

Tntd W pm () gitmppo,
ARG
Evidently, in order that 0(1) = OB(1)+0O(1) =0,
2n(n+l)o¢ I (xr) )
we must take O = 4 ntd M pm i(mg+p0), 43
~ 33 A A L P e (+3)
: 2 2 n(n+1) 4, [ 2a§iJn+% (xr)]
1.e. O = ni 2B .( Tk MU | pm el(m¢+ﬁt) 4-4
v g i 054 __X X T)+06m m( ) Jr "+% X) (ﬂ ( )

Next, we solve equation (2-9) subject to the penultimate condition of (2-13). It may be
verified, by direct substitution, that a particular integral of equation (2-9) is

T® — z Z {“nzn(n+2) (n m+1) m{‘]ﬂ“'%( mr) n+% (( ))}

n=mi=1 2n+-1 «/r n+%( In+%
M Jn+%( n+§
+ m{ }] ) im0
Jr n+§( n+§- w1 ()
a,;(n—1) (n+1) (n+m) [N, { =y (%) %(“m‘r)}
2n+1 n+£~ ) n+% ((xni)
S {J é( ) In~é (Otm-f)}] ;
P,',", eltme+ pt)} , ( 45
Ty @) Lyl 11 T )
Where My My gy
" (n+1) (n+2) agi—gas1’ " (n+1) (n+2) oagi— gt (4-6)
_ Ad,; 3 _vﬁ@' . o A4, ga
" ”(”‘“ ) i —qay’ me n(n—1) ap—gn_y

It is clear that, since

7o) —£7® (1) = § § [MEED I (1 2 0, Ko+ En 1) i M, )

x P (- =W b D () ¢

1—En+8) @3 Vi Ny 600 S} Pty () ] eitm+oD - (4.7)

this solution does not in general satisfy (2:13). We must therefore add to 7® a multiple, 7@,
of the complementary function defined by equation (2:9), i.e. ‘

IAJ,()
Jr Sy (45)

Py () 20,

Evidently, in order that
T(1)—ET'(1) = [TO1) —ETP Q)]+ [TO-ETO(1)] = 0,

13 _ Vou. 263. A.
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we must take

TO—— 3 3 citnptn

n=m i=1

n(n+2) (n—m+1) [ (1+én+28) 0, Kyt+En+1)a M, \ 1,
L T e o ey G o 1) e e P

(n—1) (n+1) (n+m) (L—En+&) a7, Ny +Enei S, L m
+ {( )}\/ J (Qn 1 )Pﬂ l(ﬂ)]a

2n+1 1“‘g7l+g) n— %(Qn l)+§9n 1 n+l((17n 1
i.e. (4-8)
v N imp+ pt)d%n n(n+2) (n-—»m—kl)
= 5 Bemm
[ { n+2 In+% (anir) (1+§n+2g)ﬁm n+%(9n+17) }
,J?’ n+% m) In-hﬁ (Ocm') (1+§7’l+2£) n+3 (Qn+l) ggn-kl‘]n-}-% (QnJrl)
Mm' ‘]n+% (anir) n+% (anir) g(?’l+1)0& ‘];H—% (qn+l T) m
NG <Jn+%(ocm) Ly (@) (L+En+20) Ty (4000) —E0uin Ty (q,H_I)}]P w1 ()
oy (n—1) (01) (n-+m)
(2n+1)
N {‘]n (06 ~7’) In (Ocm T) (1_£n+§) ym‘]nw% (gn—lr) }
Py (@) 7 Ly (@)  (L=80+8) Iy (qumt) +8¢u1 ey (1)
S ot )Ly (or) 10,4 (40 17) ) |
Jr{ T " L) T U0, ) oy )| PR (49)

5. THE MATRIX FORM OF THE EQUATION GOVERNING

Our next step is to multiply equation (2-10) by B, P e~imé+60y2drdudg, and integrate
over the interior of the sphere. To this end, we first use our expressions (4-4) and (4-9) for
® and 7, to evaluate the contributions made by the right-hand side of equation (2-10).

On using (3-23) and (4+4), we see that the matrix element to which the term L20 gives
rise is

f f f L2Q[B,, P e-ims+0] 12 dr du dp

sphere 4 ( + ) 2( + 1 J
m\n-rm).ne(n 2 J, 1
(n m) ! 2n+1 -’ 064 f [XZB i+ 07%] (’n] 77771 e L 7 :' B 7’2 dr. (5 1)

b

By (8-14) to (3-16), we obtain

j f f 12Q[B,; Pre-imd 0] 72 dr dudg

sphere

4ﬂ(n+m)'n2(n—{—1 2 2,2 211, (X) .
(n—m)!  2n41 2 oc4 [: X i+ O (cnij+my)]- (52)

J=1

By (3-29) and (3:30), we see that, when the operator @?is applied to the typical term of
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(49), harmonics Py, o, P and P, result. We shall treat these terms separately, writing, in an
obvious notation,
QT = QT+ QT+ QT (5.3)
By (3-27), (8-29) and (4-9), we obtain

A2 (n—m—+1) (n—m+2) (n+3)!
AQ3T 0y = angl (2n+1) (2n+3) (n—1)!

K {Jn+5 (“ r) [n+% (O‘nir) (1+§n+2§)ﬂniqn+l n+§ (9n+17) }

JT n+§( ) [n+%—((xm) n1[(l+gn~|—2§) ni-g(qn+1) gqn-l—l‘]n+%(9n+l)]
M Jﬂ"’% (OC -7) In+% (OC T) g(n_'—l) Qn+1']n+% (qn+lr). m i(mo-+ i
* «/r{ n+e}( ) In+ ( nz) (1+€n+2§) n+$ (Qn—H) gqn+1Jn+%(gn+I)}:|Pn+ze( pren.

(5:4)
On integration, using (3-16) to (3-18), we find

3 m a—i(mep+ pty] 42 _ dmd(n+m)! (n+1)!
”fﬂQ Tosp By ettt 0] drdpdd = 5y (Qn—l)(nQn 3) (n—m—2)1 (n—3)!

® (2n—1) a2 a,_,,
X z {Kn—Z,j [ ! (5052_2,]' _Ocni‘},m'ﬂn—&j)
J=1

4 4
Ui — Ay 2,

sphere

(xm(xn 2]ﬂn-—2,jqn—l(l+gn) :29n—1‘]71—%(qn—1)m(aniym §9n 1) n+} (qn 1)}]
z_qg—l (1+§7’l) ‘]n—x} (anl) ggn—l n—% (qn—l)

+Mn—2,j ((xm n‘?i{(Q 27’l§+€) nzynz+(2+2n§—g) an—2,jﬂn~2,j}

4
i —Xp—9 3J

)
062106,21 2]911 lg(n 1) 2q,z 1 n— %(qn 1) ( ni Vni ‘5% l) +%(9n 1) .
T di—g, { TOFE) Ty (Get) —Edn1 Ty () }]} (5:5)

On eliminating K, , ; and M,_, ; in favour of 4

some reductions,

iy n—2,j> Py means of (4:6), we obtain, after

[ [ [ AT oy (B, Py ei# 0 r2dr dudig

sphere

_ 4nT(n+m)! (n—2) (n+41) L tn g i A,y )
T (n—m—2)! (2n—3) (2n—1) (2n+ 1)12 ah—ai_, [(%ni Vi —Ed7-1) M2, 5 (¢-1)

+(O‘n—z,jﬂn—z,j‘|‘§€I%—1)ﬁni(qn—1) +(2n—1) E—E(ahi— n—2,j>j;t—lmn——2,j(Qn—-l)pni(qn—l)]'
(5-6)

By an exactly similar calculation, we find that

[[[ 2T, B, Py =it 0] 2 dag

sphere
41T (n+m+2)! n(n+3) Oén+2]06 Ay,
(n—m)l " (204 1) (2n43) (201 5) 2 aby,—ak

X [(“n+2,j Vnr2,j —&qna1) My (i) + (0y; Bri+Eq311) [’n+2,j (9n+1)
+(2n+3) g_g(“g-ﬂ,] —35) for1 mni(qnﬂ)pn-m,j (gs1)]- (5°7)

13-2



http://rsta.royalsocietypublishing.org/

/|
s o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/%
o |

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

104 P. H. ROBERTS

Similarly, we have

[ [ [ 20T 18, P i m) r2dr duag
sphere
_ 4rT(n+m+1)! n*(n4-2) (n—m+1) aZ a2 A

nj “*nj
(ﬂ—m)' (n+]) (271_*_1)2(2”_*_3)]; in- [1] nz+9n+1€712]

+ ((xnjﬂnj +£9721+1) My (Gni1) "g(agj—q;}zﬂ)fnﬂ My (Gpi1) m; (9n+1)]

47T (n4+m)! (n+1)2 (n—1) (n+m) iaz “n]An][ .
(72 m—l). (2n—[~])2(2n_1) P 10L4 _qn_ z] a,; Qn 1 Cnij

- ((xnj ),nj _gq%—l)ﬁm(%z—l) _g(“gj - qn~1)f;l—1pni(qn—l) pnj(qnvl)] . (58)

It remains to evaluate the matrix elements of the left-hand side of (2-10). We find

_l_

f f f [V2(V2L2S +i(mA— pL2) 8}] [B,, P e-iné+69] 72 dr dudg

sphere
4m(n+m)!n(n+1)
- 7(771(—m)') 2(n+1 ZA,U f[“ —4n Coy] Byyr? dr
_An(ntm)in(nt1) &
(71 m)' 2n+1 EA"](X%Z (81] ni Qn mJ) (5‘9)

Equation (2:10) may now be replaced by the infinite set of linear equations

z z Hm [7A - O (5‘]0)

I=mj=1

where 7 runs from 1 to co, and z from m to co0. The matrix elements, 77, are zero except for
the cases listed in equations (5-11) to (5-13) below. It may be noticed that two completely
distinct families of solutions exist: one in which /—m and n—m are non-negative even
integers (> 0, if m = 0), and one for which they are positive odd integers. For m = 0, the
former is the more fundamental in the sense that it appears to be associated with the lower
critical Rayleigh number, for given m and T. For m == 0, the reverse is true. We shall call the
solutions the even and the odd modes, respectively. We have

Rn(n+1) % (n+2) (n+m—+1) (n— m—H)T
o —xt Lo (n+1)2(2n+1) (2n+3) (e —g411)

X [@ni+ a1 Cpij (0 fri+Eq511) mm'(qnﬂ) —&(ogi—qn1) fur1 M (411

+ (Z;(—an)—i(—nl;(12)72(—?_*1_)772(2252(:2—_97;_)1’)[‘ [+ @1 €nii— (i Vi — EG-1) Pni(Gn-1)

—&(omi—qn-1) fu-1 b5 (4p-1)]- (5°11)

niing __ —a2r ..
064- - ani InCnis

2
m+ nZl+ ml’ll :I+

If 2 7, we have
A, ~ T g s k) (nh8) (gt

nj
X [gri1 Cpij T (“njﬂnj—l_g%wl) mm'(qnﬂ) ﬁg(“nj—qzﬂ)fnﬂ Mi(Gs1) My (¢p1) ]

(1) (1) (nfm) (n—m) T o 2
n2(2n+1) (2n—1) (od; L ) (971 €nij— (% Vaj —E45—1) Pni (90 -1)

=& = Gn-1)Soo12i(0n1) 02 (40-1) 15 (5°12)

+
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and

(1) (2—1)  n(2n43) I
(n—1) (n—m) (n—m+1) """ LE""bI 7 (n4-2) (n4-m) (nm-1) 07 bInrbi

2 2
“n+1,i“n—1,jT

= Z2n+ 1) (az +l,i‘~a$~—l,j> [(an+1,i7n+l,iw€q2) mn»~1,j (qn) + (an—l,j n—1,j _I_gq%)pnﬂ,i (qn)

+(2n+1) g—g(“;‘h1,i~0‘3~1,j)fnpn+1,i(qn) My_1,j (g,)]. (5:13)

6. NUMERICAL RESULTS: SMALL T

The solution of the infinite set of equations (5-10) has been investigated by truncating
the series expansion (3-1) after 4 values of ¢ and ¢ values of # (starting at n = 1 or 2ifm = 0
and at n = m or m+1 otherwise, and rising by 2). The result is g/ linear homogeneous
equations in g4 unknowns which have a.non-trivial solution for R = R ,, say. The hope and
belief, well supported by the numerical work, is that, as ¢ — c0 and / — o, R, tends to the
required eigenvalue, R, of the infinite set of equations. Since the different harmonics z are
separable when T = 0, itis natural that, when T issmall, best numerical results are obtained,
for (approximately) given ¢h, by taking ¢ small and / large. The axisymmetric steady case
(m = p = 0) bring this out clearly. For, in this case as Chandrasekhar (1957) has shown, the
formulation has a variational basis, and R, — R from above as ¢ and /2 — 00. Thus a smaller
value of R, is necessarily a better approximation to R than a larger value. It was found for
example that, for the free odd modes at T = 103, Ry , = 8981-15 while R; ; = 8979-44.
For large T, on the other hand, it seems best to choose ¢ and % to be roughly of the same
size. It was found for example that, for the free odd modes at T = 4 x 105, Ry 4 = 168 908,
while Ry 13 = 169568 and R, ;, = 168954. The experience acquired was later used in
choosing the best values of ¢ and % in the axisymmetric case as a guide in the non-axisym-
metric case in which a similar variational principle does not exist.

The steady axisymmetric case could also be used to provide information about the rate of
convergence of R, to R which is useful in the non-axisymmetric and overstable (p = 0)
cases. In these, the matrix elements (5-11) to (5-13) are complex, so that, after truncating
at the level (g, %), equations (5-10) provide 2¢4 real equations. Thus, with given machine
storage, T itis only possible to proceed ‘halfas far’. Assuming, however, that the convergence
of R, in these cases is roughly the same as that of the steady axisymmetric case, we can use
the latter to estimate the error in the complex cases. It was found for example that, although
convergence was rapid for small T, the values of R, for gh ~ 40 were approximately 8 %,
greater than those obtained for g4 ~ 80 when T = 106, but were approximately 10 %,
greater when T = 4 x 106. '

The results for R in the steady axisymmetric case are given, as functions of T in tables 1
and 2, and in figure 1. It may be seen that the numerical work agrees well with our asym-
ptotic results (paper I, see also § 7 below) for the case T — co. Even the magnitude and
negative sign of the first (T~3¥) correction term for the rigid case were well substantiated.
The agreement with the result of Bisshopp & Niiler (1965, equation 6-11) is, however, less

1 The KDF 9 computer of the University of Newcastle limited the matrices to 80 x 80 real elements.
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satisfactory. It is also interesting to note that despite the accuracyt of the matrix elements
given by Bisshopp (1958), his estimates of R appear to be significantly too large for
T > 10*. This may be attributed to a too severe truncation in his representation

TABLE 1. AXISYMMETRIC STEADY CONVECTION (RIGID BOUNDARY)

T R (odd mode) R (even mode)

108 9-32952 x 108 1-2442 x 10*
4%103 1-22825 x 10* 1:7994 % 104
10¢ 1-64495 x 10* 2:6366 x 10*
P 4 % 10* 2-98385 x 104 4-9054 x 10*
<[, 105 474689 x 10 7-6903 x 10*
o 4 % 10 1-02414 x 10° 1-6212 x 10
< 106 1-7760 x 10 2-758 x 107
P 4 % 108 4-3534 x 10 6775 x 10°
1w 107 8:38 x 10
=
O TABLE 2. AXISYMMETRIC STEADY CONVECTION (FREE BOUNDARY)
O T R (odd mode) R (even mode)
= 103 8:97940 x 103 89541 x 103
- 4 %108 1-67367 x 10* 18244 x 10#
52 104 2:53151 x 104 2-8391 x 10
EC_J 4% 10* 4-90395 x 10* 57601 x 10*
= 10 7-89398 x 10 9-4326 x 10*
025 4% 10° 1-68907 x 103 20572 x 109
0% 106 2-8727 x 10 3:522 x 10°
= 4 % 108 6-6937 x 105 8-955 x 105
Ta
O = 100~

RIT% 50

/ S
_ rigid el
, boundary e
g asymptote
< - S —
::J ‘ -
>.< >" oL, 1 - ] 1
olm 10° 10 10° 10° 107
~ = T
O Ficure 1. Axisymmetric steady convection. R/T# is shown as a function of T for the cases of rigid
E ©) and free boundaries. The asymptote R/T? = 20-7126 for T — co is shown.
5

1 The entries given in tables 5 to 7 by Bisshopp (1958) appear to be correct to within 3 in the final place
shown, with the following exceptions: in the rigid case, the R entry n = m = 4, j = £ = 2 should be
0-48627 and the T entry for n = m = 4, j = k = 3 should be 1:27028; in the free case, the R entry for
n=m=0,j =k = 2should be —048175 and forn = m = 2,j = k£ = 3 should be —8-6841. Apart from
a transpositional error, the roots shown in his table 3 are correct to within 1 in the last place with one
exception which, however, is correct to within 3 in the last place. We may note here that Bisshopp’s analytic
work appears to contain two very minor errors which, however, could not have persisted in his numerical
work: (i) in his equation (85) for (nk| FT |nj), the first term in curly brackets should be multiplied by 2, and
(ii) in his equation (87) for (mj| FQ |nk), the over-all sign should be reversed.
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series. It is, nevertheless, remarkable that he could obtain such accurate results by desk
calculator.

In the non-axisymmetric and overstable cases, p is a second eigenvalue to be determined
in addition to R, by the demand that both the real and imaginary parts of the determinant
of I1 coefficients vanish. The computation of these matrix elements required the evaluation
of spherical Bessel functions of semi-imaginary argument. For modulus of argument less
than five times the order, these were evaluated by series; for larger moduli the asymptotic
expansions were used. Nevertheless, for large n (~ 16), there was some loss of accuracy
(~ 10759, if order and modulus of argument were roughly equal. The whole programme
could be partially tested by repeating the axisymmetric cases, and the agreement was satis-
factory. As we explained above, we could not expect results derived from this programme
to exceed 109, accuracy at T = 4-106. We did not, in fact, consider values of T larger
than 10°.

TABLE 3. ASYMMETRIC MODES (RIGID BOUNDARY)

T R(m=1) R (m = 2) R (m = 3) R (m = 4) R (m = 5)
103 9680 11070 15507 22234 31443
3x103 12346 12316 16271 22770 31848
10% 18081 15788 18625 24498 33189
3 x10* 27557 22353 231781 28617 36555
10° 45531 35135 35423 39023 45701

4x10°

3x10°
R

210"

10* | .
10° 10* 10°
T

Ficure 2. Asymmetric convection. R is shown as a function of T for the
case of rigid boundaries.
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Our results for R in the non-symmetric cases (rigid boundary only) are given in table 3
and in figure 2. It will be seen that the value of m for which R is least increases systematically
with T. This result is supported by the asymptotic analysis of §7 to 9.

7. THE NEARLY AXISYMMETRIC CASE IN THE LIMIT T — o0

In this section we begin a study of the limit T — oo, extending further the analysis of
paper 1. It will be appropriate to suppose that, as the limit T — oo is taken,

m = M'Te (7-1)

We first concentrate on fixed values for the constants A/ and «, and try to determine which
such mode is ‘preferred’, i.e. which is associated with the smallest value, R, of R. Later, we
will minimize R, itself over M and a, thereby obtaining the ‘overall’ preferred mode.

We may conveniently divide the possible choice of « into five subclasses (i) « < ¢,
(i) a=4%, (i) t<a<i, (iv) =4, and (v) a > 1. We discuss case (i) in this section,
case (ii) in § 8, and the remainder in §9.

We suppose, following paper I, that

5= 0(TY, £ =0(), 4=p= 0T, (2
where (p, @, z) are cylindrical polar coordinates in which Oz is ¢ = 0, the axis of rotation.
As explained in paper I, the first of (7-2) is not really an assumption; rather it defines a
‘range of interest’ in which the minimum, R,, is believed to lie. This belief can be tested at
the conclusion of the analysis and, if incorrect, a new postulate chosen. The last of (7-2) is an
assumption which can be verified a posteriori. It is clearly incorrect in overstable cases
(m = 0, p + 0) in which it should be replaced by p = O(T?). These have, however, been
studied in paper I and will be examined no further here.

From (7-2) we have, to leading order,

szi+_l_ g _m

e PETEYS

9 9 (7:3)
3~ _m2 — 2
Q*~—m 3Z+z(zaz+1)v .
The action of these modified operators on J, ({p) is clearly algebraic, i.¢. solutions propor-

tional to J,,({p) exist and, as explained in paper I, these in fact provide a basis for the
required asymptotic solutions. (Here {is a constant.) For solutions proportional to J,,({p),

we have, by (7-3) V2x (2, L2xm?+(%2%, )
@~ [ §Z+c2z],} 7
and (2'9) to (2-11) become, respectively,
[(m2-222) (@ -ip) —iml] T =2 [ (m-223) 4, +022]8, (7:5)

[ (m?+822%) (PP A4-ip) —imA] § = A |:(m2+§222) 9% + 82 | T+R(m*+-%2%) O,  (7-6)

(2 +iwp) © = (m2+4-(22%) S. (7-7)
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These equations may be solved in the form

6 — ”gifjjs C(C+ip) ZF-+imdF, (7-8)
2 2 252
S Lo e AN, o
where F(z) satisfies d?F[dz? = (A—Bz?) F, (7-10)
_ 8 iy MR mR(E+ip) :
g CR(@+ip) (7:12)

T((2+iwp)

All these results were derived, in different fashion, in paper I, where it was also shown that
F is proportional to «,.

Naturally, since the system of equations (7+8) to (7-12) governing the ‘main stream’ part
of the asymptotic solution is only of second order, while the original problem was of eighth
order, we cannot subject F to conditions (2-13) in their entirety. As is usual in this type of
singular perturbation problem, the correct way of obtaining the leading approximation
to the main stream is to subject F to the boundary condition of lowest differential order,
leaving to suitably constructed boundary layers the task of satisfying the remainder (see
paper I, §III). Thus we require that § = 0 on r = 1, i.e. by (7-8)

C((2-+ip) 2P +imTHF = 0, on 1= 1. (7:13)

Of course, (7-13) cannot be obeyed simultaneously everywhere on 7 = 1. This, however, as
will presently become apparent, is not in fact required.

If0 < « < %, the solution can, as we will presently see, be regarded as a slight perturbation
of the steady axisymmetric state. According to (7-10) to (7-13), this is governed by

d?F[dz? = (4,—B,z?%) F,, (7-14)
where A, =T, B,={R,)|T, (7-15)
and Fy(+1)=0. (7-16)

The justification for applying (7-16) at the poles is given in paper I [see also argument
beneath (7-22) below]. Briefly, it rests on the fact that, by the first of (7-2), { = O(T%) in
the range of interest. Thus the required solution, which is proportional to J;({p), vanishes
(compared with its values on the axis) outside an axial cell of radius T-*. Naturally (7-13)
should be applied at the ends of this cell.

In addition to (7-16), we apply

F(,)(O) =0, FO(IO) =1, (7'17)

the second of which is purely a normalization condition. The first selects the ‘odd’ mode
mentioned below (5-10), which has a smaller Rayleigh number than the ‘even’ mode.

14 Vor. 263. A.
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As both Roberts (paper I) and Bisshopp & Niiler (1965) have shown, (7:14) to (7:17) are
equivalent to the variational problem 0R, = 0, where

1 dF,
Bof zZF(%dz:f (d ) dz+4, f F2dz. (7-18)
0 0
If we suppose a trial function of the form
N
Fy,= 3 a,cos (n—1%) 7z, (7-19)
n=1

and minimize over a,, we obtain a set of N simultaneous equations for a, to ay, which have
a non-trivial solution if} detC,,, = 0, where

(R, 2 6 ;
mnvé\/nn[ (ﬁ 272_{_1)2,”2) T__(n_l_'%)zﬂ:l

2{: R ym-n (2m—+1) (2n+1) )
(m—+n+1)2 (m—n)27r2:|' (7-20)

1__

TABLE 4. EIGENVALUE (VARIATIONAL METHOD)

N &/ TH R,T%

1 ’ 1-:035623 26404757
2 1-099711 20-965063
3 1-107586 20729482
4 1-108187 20-714565
5 1-108250 20-712970
6 1:108260 20712699
7 1-108262 20-712636
o) 1-108263 20-712604

The values of Ry, and {, (the value of { at which R, occurs), are shown in table 4 as a
function of the degree of truncation, N. It is clear that the convergence is rapid. The final
(N = 00) entry of the table gives the result of the exact numerical integration reported in
paper 1.1

Returning now to the case 0 < « < §, we first observe that

Tu () _ Ju(mplpy)
P = " (7:21)

wh¢re p, = m/{. (7-22)

By the well-known asymptotic properties of Bessel functions, the right of (7-21) vanishes
algebraically as m — co for fixed p/p, > 1, and exponentially for fixed p/p, < 1, the ‘distance’
in which the function falls to zero in each case being O(m~%). Thus, for p, < m~%, i.c. for
@ < 1%, the solutions obtained above, vanish outside an axial cell of radius O(T*%). For
@ > 1y, they vanish everywhere except in a cylindrical annulus coaxial with the rotation

1 The corresponding result by Bisshopp & Niiler (1965, eqn. 6-5) appears to be in error by a factor of 2

in the off-diagonal elements of C. Comparing their findings with those of table 4 above, it appears that this
mistake persisted in their numerical work.

1 This opportunity is taken of correcting three misprints in paper I. Above (57), z, should read 1-3612213,
while on that line (and also on p. 250), I"(z,) should be replaced by f*(z,).
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE 111
axis, of radius p, and of thickness O(T~2#3), In this case, we may replace (7-13) by

C(C24ip) zZF+imTHF =0, on z= (1—m2/2)3, (7-23)

1.e. by the condition that , vanishes on the intersection of the annular cell with the surface
of the sphere.

Until this moment, the analysis has been valid not only in case (i) but also in case (ii).
Now, however, we postpone further discussion of case (ii) until § 8. We suppose « < §, and
present the problem, posed by (7-23) and (7-10) to (7-12), as an expansion about the solution
of (7-14) to (7-16) in a series of powers of imT~%; we write

A=4 +( )A + (1—”1)2,4 . etc. (7-24)
T Ts) 72
We readily discover, for the marginal case, that
p=T 5+ (’”3)] R=T8[3—A (T%) +0 (@)] (7-25)
where 1, = R, T-% and s and A are eigenvalues to be determined. According to (7-11) and
(7-12), we have o o sk, R,
1= o =" e
; T ;A a)fl —a);I;2RO (7:26)
By = (1-ov )T§) BQZ"T—%*““{?—T%-““,
and, by equating like powers of im T~% in (7-10), we obtain (7-14) and
d(;zl;‘l = (4,—2%?B,) F; + (4,—2%B,) I, (7-27)
d?F, )
EE (Ay—2%B,) Fy+ (4,—22B,) F\+ (4,—22B,) F,,. (7-28)
In a similar way, (7-:23) may be expanded to give rise to (7-16) and to
RO =-TR0, B0 =-GRO+(G-gm) BO. (@
The required F'is even ; we may also choose ' = 1 at z = 0. Then F, like Fy, obeys (7-17), and
their difference obeys F,(0) = FJ(0) = F,(0) = F}(0) = 0. (7-30)

Let G, be a second independent solution of (7-14) for the same values of 4, and B, as Fy;

for definiteness, suppose it obeys
Go(0) =1, Gy(0) = 0. (7-31)

Clearly, by (7-14) and the first of (7-17) and (7-31), the Wronskian of ; and G is
F,Gy—GyFy =1, - (7-32)

which, incidentally, shows that G, =F, f Z%Zz—
0

14-2
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112 P. H. ROBERTS
By (7-16) and (7-32) we have
[ " — 4-025¢ .
) F{ (1) = 4-02528. (7-33)
Here we have used the solution for the case { = 1-10826'T* for which A, is least. In this
connexion it should be observed that the variational property (7-18) assures us that this
value of { will also provide the smallest value of R in the nearly axisymmetric case considered
here.

We may write down the formal solution of (7-27) and the first pair of (7-30) as

F,——F, f (4,—22B,) F, Gy dz -G, f (4,—22B,) Fidz. (7-34)
0 0
This satisfies the first of (7-29) if
1 %
[}tz pyz = w0 (7:35)
0

This, with the aid of (7-26), determines s as a function of w, the integrals
1 1
f F2dz — 0-87445, f 2F2dz — 0-19107, (7-36)
0 0

being easily calculable properties of the known solution £,
On multiplying (7-28) by F, and integrating over the range (0,1) we find, after an
integration by parts, that

1 1
f (4dy—2%B,) F%dz—}—f (A, —22B)) FyF, dz = — Fy(1) Fy(1). (7-37)
0 0
Using (7-34) and (7-29) this may be written

1 1 z
fO(A2~—ZQBz) Fidzt 2f0dz(A1-~z2B1) F, Gof (4,—22B,) F3dz

——(F) wmr[mmen- 5] @)

Now G{(1) = —2-30887, and the integrals

1 ‘ z 1 z
fszOGof F3dz = 0:19628, fszOGOf 22F, Gy dz = 0-02598,
0
1 0 2 10 Ow (7:39)
JZZszOGof F2dz = 0081007, fzzszOGOJ”z2FOGOdz:0-013010,
0 0 0 0

are easily calculable properties of , and G,. Thus, by (7-36) and (7-39), A may be deter-
mined as a function of w. The results are givent in table 5. It will be noted that, in all cases
Ais positive. This strongly indicates (cf. equation (7-25)) that the overall preferred mode is
more asymmetric than those covered by this theory, i.e. the smallest value of R is in the
range « > 4. This, as we will presently see, is indeed so.

Before leaving the present case, we should observe that the A term of (7-25) does not

t It may be noted that s is infinite at w = }, at which the present perturbation approach is, presumably,
invalid. The reason for this is not clear.
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THERMAL INSTABILITY OF A ROTATING-FLUID SPHERE 113

necessarily provide the dominant correction to R,. Two other effects may be greater. First,
the fact that the width of the annular cell is O(m~%) means that (7-13) is not exactly satisfied
across its intersection with the sphere. When this is allowed for, a correction O(m~3T%) is
added to R,. Secondly, boundary layers are required to deal with the final conditions of

TABLE 5. VALUES OF § AND A

1) s A
0-025 —3-2828 5-899
01 —4-3381 33-079
0-3 —30:3668 4940-030
1 0-5183 51-203
3 0-3796 15:394

10 0-1047 9-086
40 0-0255 7-437

(2-13), which have not yet been satisfied. This, as was shown in section 11 of paper I,
introduces a term of order T+ into the expansion of R, if the boundary is rigid, and of order
T3, if it is free. In the leading approximation, this correction is unmodified by the slight
degree of asymmetry considered here, i.e. it is independent of m.

8. TuE LimiT T - 0O FOR INTERMEDIATE ASYMMETRIES

The important case « = § has already been formulated in (7-10) to (7-12) and (7-23),
above. Convection occurs in an annular cell, of thickness T—%, whose radius p, = m/{ = O(1).
The process of solutions is entirely straightforward: For each fixed value of M (cf. equation
(7-1)), we seek the value {,, (say) of { for which R is least (= R, say). As in case (i),
&y = O(TH and R,, = O(T?), while p;, = O(T%). We find that, as M increases from 0 to co,
p, increases from 0 to 1,1.e. the cell, from being on the axis in the axisymmetric case, gradually
becomes equatorial. Also, R,,/T* decreases systematically until a minimum is reached, and
then increases systematically. For w = 1, for example, the minimum value 14:1304254 of

TABLE 6. CRITICAL ASYMMETRIES

) m/ T 0° R/T% b/ T
0-025 0-202 345 0-2018 7-21
0-1 0-310 34-1 1-22 4-29
0-3 0:412 333 4-64 2:53
1 0-531 32-3 14-13 0-877
3 0-664 331 18:31 0-151

10 0-716 34-2 18-88 0:0345
40 0-729 344 19-01 0-0080

R,,/T% occurs when M = 0-53144 and when ¢, = 32:310°. [Here 0, = sin~! p, denotes the
colatitude of the intersection of the cell with the surface.] The behaviour of R,,/T% as a
function of M for the case » = 1 is shown in figure 3. Results for the minima are also given in
table 6. The case of small w deserves special comment. Here, as we have shown in paper I,
overstable oscillations are possible and, indeed, the critical value of R/T# for them vanishes
with ©, when @ - 0. The numerical results for the non-symmetric case suggest that their
critical R/T% also vanishes with w, when @ — 0; and indeed that they are always smaller than
the corresponding overstable Rayleigh numbers. This indicates that, even when overstable
solutions are possible, they are not preferred. It appears likely that, at all Prandtl numbers
the smallest Rayleigh number belongs to an unsymmetric mode.

14-3


http://rsta.royalsocietypublishing.org/

\
A

4 X

//_s \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

114

40

30

20

10,

0

I

P. H. ROBERTS

-110

=
(o]
<
=S
=3
<o

m|T%

10

Fieure 3. Asymptotic results for T - o0 in the case in which m = O(T%), and w= 1. Convection
occurs in a cylindrical shell, coaxial with €, intersecting the surface of the sphere at a co-latitude
of 6 (given here in degrees). It will be seen that R/T# has a minimum, for which the radius of
the convection cell is about half the radius of the sphere.

fog

i

Ficure 4

cylinder on which
convection occurs

9. THE HIGHLY ASYMMETRIC CASE IN THE LIMIT T — o0

For completeness, we now discuss, rather briefly, the remaining possible values of «. The
case « > } is particularly simple. Here rotation plays no part in the leading term of the

asymptotic solution which, therefore, becomes the solution in the non-rotating case (cf.

*
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for example, Roberts 19655), S = S(r) Pr(4) e, (9-1)
here § satisfi <4 §=—I(l+1) RS,
where § satisfies EEas dr - r2 :I +1)R (9-2)
’ " l+1
= (1-§) 8§ +E£8" = [d 2+rdr :l S=0, on r=1. (9-3)

The smallest value (m) of / yields the smallest value of R for given m. We therefore replace /
by min (9-1) to (9-3) and, since m > 1, replace m(m+-1) by m?2.

In the limit R — oo, (9-2) shows that convection occurs over the entire surface of the
sphere, but that it penetrates only a small distance within it. To see this, write

r=1—¢, (9-4)
where ¢ - 0 as m — o0. Then, to leading order, (9-2) becomes
3m*d2S
*g—azi——mﬁ[l—i—&C]S = —m?RS,
. azs ., )
i.e. e~ = 263m2({—¢,) S, (9-5)
where = -—— (R—m*). (9-6)

6em4

According to (9-5), convection penetrates the sphere to a depth of order m~¥; in fact, a con-
venient choice of ¢ is seen to be ¢ = (2m?)-1, (9-7)

Then (9-5) gives S oc Ai({—¢,); (9-8)

where Ai denotes the Airy function of the first kind. The other independent solution to (9-5)
involves the Airy function of the second kind and is exponentially large as { — co; this is
physically unacceptable. Since the equation (9-5) governing the main stream is only of
second order, we require (in the usual way) that it obeys only the first of (9-3), i.e. we take

Ai(—{) =0. (9-9)
The smallest root, 2-33810741, of this equation yields the smallest value of R, namely
R = m*+11-1345m153, (9-10)

In the case } < a < 1, we have p = O(m'T%), as before. Thus again the time derivatives in
(2:9) to (2-11) are, in the first approximation, negligible in comparison with the V2 terms
with which they appear and which are O(m?). Moreover, the difference between L2?(J/dz)
and (9/dz) L? is negligible in the first approximation, so that (2-12) may be rewritten

Y
_I2 .
Q*~—L " (9-11)
Elimination of 7"and ® in (2-9) to (2-11) now gives

V"S+TZ S FRI2S—o. (9-12)
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The remarkable similarity between this equation and that governing convection in a plane
rotating layer (cf. Chandrasekhar 1961, chap. mi, equation (99)) should be noted; it
provides some a posteriori justification for the qualitative discussion of § 1.

The solution of (9:12) to be described is in the form of an equatorial cell, i.e. convection
only occurs near the equator 7 = 1, ¢ = 4m of the sphere and penetrates only a small distance
in the ¢ direction and a small distance from the surface. For this reason it is advantageous
to introduce a change of variable, replacing p by

% P e
=y (9-13)

The surface of the sphere then becomes p* = 0. In the first approximation,

2
V2 ~ _m2|:1+z2+2p* ”_‘L.L]

m? dp*2 ]’ (9-14)
L2 = m?(1+2%),
so that (9-12) gives, to leading order,
6(1-322 3 & T 7 Rm?2 LS 5
— 8 (14322 6p% — 23p*2)+ ot Ri2(1423)) S = 0. (915)
This equation admits separable solutions:
S — Y(p*) Z(2), (9-16)

for, on substituting (9-16) into (9-15), we obtain
TZ R\ , Y” « R B
{mﬁ- ~ (3“%) z }~|~3{7—n—2—Ym2p }+(%—~1) —0. (9-17)

(We shall see presently that R = m*in the leading approximation. We may therefore replace

the R/m* in the first bracket by 1. This procedure would, however, be incorrect in the final

term where the z? of the first term does not appear and the difference between R/m* and 1,

though small, is of the same order as the remaining terms of (9-17), as we will soon see.)
Let us introduce boundary-layer variables { and 7 to replace p* and z:

¢ T\
7= e = L) o)
Then (9-17) becomes
(8T) 1 42z 6 1dy '
T | zde ~%72]*(‘.27712% Y de §]+[ =0 (:19)
If we denote the separation constant by y+ %, we have
dz
2 -z =0 (9-20)

This is Weber’s equation which has solutions bounded both as 7—+ o0 and 7+ — o0 if, and
only if, y is a non-negative integer, n (say). The solutions are then proportional to the well-

known Hermite functions: d

D, (1) = (— 1)k 1 (), (9-21)
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Now (9-19) becomes a2y
-0, (9-22)

where [in place of definition (9:6)], we have

2R—mt) 2(2n+1)
&= Sem)t ~ 3mi T (9-23)

Following the argument given in the case « > §, we see that (9-8) and (9-9) hold, and that
the smallest value of R is given by 7z = 0 and by the smallest zero of (9-9). We obtain

R = mb4-11-1345m™ 4 1-4142m'T*. (9-24)

It is interesting to observe that, according to (9-24), m — 0 provide the smallest value of R.
This indicates, in support of §§ 7 and 8, that the overall preferred mode is less asymmetric
than those considered in this section, i.e. the smallest value of R lies in the range a < %.
This diminishes our interest in the final (difficult) case (iv), « = . We have not examined
this case in detail, but it appears that as A/ increases from zero to oo, the equatorial cell of
case (iii) gradually spreads over the surface of the sphere to become the surface convection of
case (v).

Early efforts for §§ 2 to 5 were materially assisted by Mrs T. Chamalaun and by a D.S.I.R.
Special Research Grant. Later work benefited from the conscientious assistance of Miss
M. F. Tabrett and by S.R.C. Grant B/SR/150. My thanks are due to the Director of the
University’s Computing Laboratory for generous support. A summary of the present
work has recently appeared in a Woods Hole Report (Ref. No. 67-54).
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